What's new arround internet

Last one

Src Date (GMT) Titre Description Tags Stories Notes
GoogleSec.webp 2022-10-20 13:01:02 Announcing GUAC, a great pairing with SLSA (and SBOM)! (lien direct) Posted by Brandon Lum, Mihai Maruseac, Isaac Hepworth, Google Open Source Security Team Supply chain security is at the fore of the industry's collective consciousness. We've recently seen a significant rise in software supply chain attacks, a Log4j vulnerability of catastrophic severity and breadth, and even an Executive Order on Cybersecurity. It is against this background that Google is seeking contributors to a new open source project called GUAC (pronounced like the dip). GUAC, or Graph for Understanding Artifact Composition, is in the early stages yet is poised to change how the industry understands software supply chains. GUAC addresses a need created by the burgeoning efforts across the ecosystem to generate software build, security, and dependency metadata. True to Google's mission to organize and make the world's information universally accessible and useful, GUAC is meant to democratize the availability of this security information by making it freely accessible and useful for every organization, not just those with enterprise-scale security and IT funding. Thanks to community collaboration in groups such as OpenSSF, SLSA, SPDX, CycloneDX, and others, organizations increasingly have ready access to: Software Bills of Materials (SBOMs) (with SPDX-SBOM-Generator, Syft, kubernetes bom tool) signed attestations about how software was built (e.g. SLSA with SLSA3 Github Actions Builder, Google Cloud Build) vulnerability databases that aggregate information across ecosystems and make vulnerabilities more discoverable and actionable (e.g. OSV.dev, Global Security Database (GSD)). These data are useful on their own, but it's difficult to combine and synthesize the information for a more comprehensive view. The documents are scattered across different databases and producers, are attached to different ecosystem entities, and cannot be easily aggregated to answer higher-level questions about an organization's software assets. To help address this issue we've teamed up with Kusari, Purdue University, and Citi to create GUAC, a free tool to bring together many different sources of software security metadata. We're excited to share the project's proof of concept, which lets you query a small dataset of software metadata including SLSA provenance, SBOMs, and OpenSSF Scorecards. What is GUAC Graph for Understanding Artifact Composition (GUAC) aggregates software security metadata into a high fidelity graph database-normalizing entity identities and mapping standard relationships between them. Querying this graph can drive higher-level organizational outcomes such as audit, policy, risk management, and even developer assistance. Conceptually, GUAC occupies the “aggregation and synthesis” layer of the software supply chain transparency logical model: Tool Vulnerability Uber
GoogleSec.webp 2022-06-14 12:00:00 SBOM in Action: finding vulnerabilities with a Software Bill of Materials (lien direct) Posted by Brandon Lum and Oliver Chang, Google Open Source Security TeamThe past year has seen an industry-wide effort to embrace Software Bills of Materials (SBOMs)-a list of all the components, libraries, and modules that are required to build a piece of software. In the wake of the 2021 Executive Order on Cybersecurity, these ingredient labels for software became popular as a way to understand what's in the software we all consume. The guiding idea is that it's impossible to judge the risks of particular software without knowing all of its components-including those produced by others. This increased interest in SBOMs saw another boost after the National Institute of Standards and Technology (NIST) released its Secure Software Development Framework, which requires SBOM information to be available for software. But now that the industry is making progress on methods to generate and share SBOMs, what do we do with them?Generating an SBOM is only one half of the story. Once an SBOM is available for a given piece of software, it needs to be mapped onto a list of known vulnerabilities to know which components could pose a threat. By connecting these two sources of information, consumers will know not just what's in what's in their software, but also its risks and whether they need to remediate any issues.In this blog post, we demonstrate the process of taking an SBOM from a large and critical project-Kubernetes-and using an open source tool to identify the vulnerabilities it contains. Our example's success shows that we don't need to wait for SBOM generation to reach full maturity before we begin mapping SBOMs to common vulnerability databases. With just a few updates from SBOM creators to address current limitations in connecting the two sources of data, this process is poised to become easily within reach of the average software consumer. OSV: Connecting SBOMs to vulnerabilitiesThe following example uses Kubernetes, a major project that makes its SBOM available using the Software Package Data Exchange (SPDX) format-an international open standard (ISO) for communicating SBOM information. The same idea should apply to any project that makes its SBOM available, and for projects that don't, you can generate your own SBOM using the same bom tool Kubernetes created.We have chosen to map the SBOM to the Open Source Vulnerabilities (OSV) database, which describes vulnerabilities in a format that was specifically designed to map to open source package versions or commit hashes. The OSV database excels here as it provides a standardized format and aggregates information across multiple ecosystems (e.g., Python, Golang, Rust) and databases (e.g., Github Advisory Database (GHSA), Global Security Database (GSD)).To connect the SBOM to the database, we'll use the SPDX spdx-to-osv tool. This open source tool takes in an SPDX SBOM document, queries the OSV database of vulnerabilities, and returns an enumeration of vulnerabilities present in the software's declared components.Example: Kubernetes' SBOMThe first step is to download Kubernetes' SBOM, which is publicly available and contains information on the project, dependencies, versions, and Tool Vulnerability Uber
GoogleSec.webp 2022-05-18 09:03:33 Privileged pod escalations in Kubernetes and GKE (lien direct) Posted by GKE and Anthos Platform Security Teams At the KubeCon EU 2022 conference in Valencia, security researchers from Palo Alto Networks presented research findings on “trampoline pods”-pods with an elevated set of privileges required to do their job, but that could conceivably be used as a jumping off point to gain escalated privileges.The research mentions GKE, including how developers should look at the privileged pod problem today, what the GKE team is doing to minimize the use of privileged pods, and actions GKE users can take to protect their clusters.Privileged pods within the context of GKE securityWhile privileged pods can pose a security issue, it's important to look at them within the overall context of GKE security. To use a privileged pod as a “trampoline” in GKE, there is a major prerequisite – the attacker has to first execute a successful application compromise and container breakout attack. Because the use of privileged pods in an attack requires a first step such as a container breakout to be effective, let's look at two areas:features of GKE you can use to reduce the likelihood of a container breakoutsteps the GKE team is taking to minimize the use of privileged pods and the privileges needed in them.Reducing container breakoutsThere are a number of features in GKE along with some best practices that you can use to reduce the likelihood of a container breakout:Use GKE Sandbox to strengthen the container security boundary. Over the last few months, GKE Sandbox has protected containers running it against several newly discovered Linux kernel breakout CVEs.Adopt GKE Autopilot for new clusters. Autopilot clusters have default policies that prevent host access through mechanisms like host path volumes and host network. The container runtime default seccomp profile is also enabled by default on Autopilot which has prevented several breakouts.Subscribe to GKE Release Channels and use autoupgrade to keep nodes patched automatically against kernel vulnerabilities.Run Google's Container Optimized OS, the minimal and hardened container optimized OS that makes much of the disk read-only.Incorporate binary authorization into your SDLC to require that containers admitted into the cluster are from trusted build systems and up-to-date on patching.Use Secure Command Center's Container Threat Detection or supported third-party tools to detect the most common runtime attacks.More information can be found in the GKE Hardening Guide.How GKE is reducing the use of privileged pod Tool Threat Uber
Last update at: 2024-06-28 11:07:31
See our sources.
My email:

To see everything: Our RSS (filtrered) Twitter