What's new arround internet

Last one

Src Date (GMT) Titre Description Tags Stories Notes
ErrataRob.webp 2019-05-28 06:20:06 Almost One Million Vulnerable to BlueKeep Vuln (CVE-2019-0708) (lien direct) Microsoft announced a vulnerability in it's "Remote Desktop" product that can lead to robust, wormable exploits. I scanned the Internet to assess the danger. I find nearly 1-million devices on the public Internet that are vulnerable to the bug. That means when the worm hits, it'll likely compromise those million devices. This will likely lead to an event as damaging as WannaCry and notPetya from 2017 -- potentially worse, as hackers have since honed their skills exploiting these things for ransomware and other nastiness.To scan the Internet, I started with masscan, my Internet-scale port scanner, looking for port 3389, the one used by Remote Desktop. This takes a couple hours, and lists all the devices running Remote Desktop -- in theory.This returned 7,629,102 results (over 7-million). However, there is a lot of junk out there that'll respond on this port. Only about half are actually Remote Desktop.Masscan only finds the open ports, but is not complex enough to check for the vulnerability. Remote Desktop is a complicated protocol. A project was posted that could connect to an address and test it, to see if it was patched or vulnerable. I took that project and optimized it a bit, rdpscan, then used it to scan the results from masscan. It's a thousand times slower, but it's only scanning the results from masscan instead of the entire Internet.The table of results is as follows:1447579  UNKNOWN - receive timeout1414793  SAFE - Target appears patched1294719  UNKNOWN - connection reset by peer1235448  SAFE - CredSSP/NLA required 923671  VULNERABLE -- got appid 651545  UNKNOWN - FIN received 438480  UNKNOWN - connect timeout 105721  UNKNOWN - connect failed 9  82836  SAFE - not RDP but HTTP  24833  UNKNOWN - connection reset on connect   3098  UNKNOWN - network error   2576  UNKNOWN - connection terminatedThe various UNKNOWN things fail for various reasons. A lot of them are because the protocol isn't actually Remote Desktop and respond weirdly when we try to talk Remote Desktop. A lot of others are Windows machines, sometimes vulnerable and sometimes not, but for some reason return errors sometimes.The important results are those marked VULNERABLE. There are 923,671 vulnerable machines in this result. That means we've confirmed the vulnerability really does exist, though it's possible a small number of these are "honeypots" deliberately pretending to be vulnerable in order to monitor hacker activity on the Internet.The next result are those marked SAFE due to probably being "pached". Actually, it doesn't necessarily mean they are patched Windows boxes. They could instead be non-Windows systems that appear the same as patched Windows boxes. But either way, they are safe from this vulnerability. There are 1,414,793 of them.The next result to look at are those marked SAFE due to CredSSP/NLA failures, of which there are 1,235,448. This doesn't mean they are patched, but only that we can't exploit them. They require "network level authentication" first before we can talk Remote Desktop to them. That means we can't test whether they are patched or vulnerable -- but neither can the hackers. They may still be exploitable via an insider threat who knows a valid username/password, but they aren't exploitable by anonymous hackers or worms.The next category is marked as SAFE because they aren't Remote Desktop at all, but HTTP servers. In other words, in response to o Ransomware Vulnerability Threat Patching Guideline NotPetya Wannacry
ErrataRob.webp 2019-05-27 19:59:38 A lesson in journalism vs. cybersecurity (lien direct) A recent NYTimes article blaming the NSA for a ransomware attack on Baltimore is typical bad journalism. It's an op-ed masquerading as a news article. It cites many to support the conclusion the NSA is to be blamed, but only a single quote, from the NSA director, from the opposing side. Yet many experts oppose this conclusion, such as @dave_maynor, @beauwoods, @daveaitel, @riskybusiness, @shpantzer, @todb, @hrbrmst, ... It's not as if these people are hard to find, it's that the story's authors didn't look.The main reason experts disagree is that the NSA's Eternalblue isn't actually responsible for most ransomware infections. It's almost never used to start the initial infection -- that's almost always phishing or website vulns. Once inside, it's almost never used to spread laterally -- that's almost always done with windows networking and stolen credentials. Yes, ransomware increasingly includes Eternalblue as part of their arsenal of attacks, but this doesn't mean Eternalblue is responsible for ransomware.The NYTimes story takes extraordinary effort to jump around this fact, deliberately misleading the reader to conflate one with the other. A good example is this paragraph:That link is a warning from last July about the "Emotet" ransomware and makes no mention of EternalBlue. Instead, the story is citing anonymous researchers claiming that EthernalBlue has been added to Emotet since after that DHS warning.Who are these anonymous researchers? The NYTimes article doesn't say. This is bad journalism. The principles of journalism are that you are supposed to attribute where you got such information, so that the reader can verify for themselves whether the information is true or false, or at least, credible.And in this case, it's probably false. The likely source for that claim is this article from Malwarebytes about Emotet. They have since retracted this claim, as the latest version of their article points out.In any event, the NYTimes article claims that Emotet is now "relying" on the NSA's EternalBlue to spread. That's not the same thing as "using", not even close. Yes, lots of ransomware has been updated to also use Eternalblue to spread. However, what ransomware is relying upon is still the Wind Ransomware Malware Patching Guideline NotPetya Wannacry
ErrataRob.webp 2018-06-27 15:49:15 Lessons from nPetya one year later (lien direct) This is the one year anniversary of NotPetya. It was probably the most expensive single hacker attack in history (so far), with FedEx estimating it cost them $300 million. Shipping giant Maersk and drug giant Merck suffered losses on a similar scale. Many are discussing lessons we should learn from this, but they are the wrong lessons.An example is this quote in a recent article:"One year on from NotPetya, it seems lessons still haven't been learned. A lack of regular patching of outdated systems because of the issues of downtime and disruption to organisations was the path through which both NotPetya and WannaCry spread, and this fundamental problem remains." This is an attractive claim. It describes the problem in terms of people being "weak" and that the solution is to be "strong". If only organizations where strong enough, willing to deal with downtime and disruption, then problems like this wouldn't happen.But this is wrong, at least in the case of NotPetya.NotPetya's spread was initiated through the Ukraining company MeDoc, which provided tax accounting software. It had an auto-update process for keeping its software up-to-date. This was subverted in order to deliver the initial NotPetya infection. Patching had nothing to do with this. Other common security controls like firewalls were also bypassed.Auto-updates and cloud-management of software and IoT devices is becoming the norm. This creates a danger for such "supply chain" attacks, where the supplier of the product gets compromised, spreading an infection to all their customers. The lesson organizations need to learn about this is how such infections can be contained. One way is to firewall such products away from the core network. Another solution is port-isolation/microsegmentation, that limits the spread after an initial infection.Once NotPetya got into an organization, it spread laterally. The chief way it did this was through Mimikatz/PsExec, reusing Windows credentials. It stole whatever login information it could get from the infected machine and used it to try to log on to other Windows machines. If it got lucky getting domain administrator credentials, it then spread to the entire Windows domain. This was the primary method of spreading, not the unpatched ETERNALBLUE vulnerability. This is why it was so devastating to companies like Maersk: it wasn't a matter of a few unpatched systems getting infected, it was a matter of losing entire domains, including the backup systems.Such spreading through Windows credentials continues to plague organizations. A good example is the recent ransomware infection of the City of Atlanta that spread much the same way. The limits of the worm were the limits of domain trust relationships. For example, it didn't infect the city airport because that Windows domain is separate from the city's domains.This is the most pressing lesson organizations need to learn, the one they are ignoring. They need to do more to prevent desktops from infecting each other, such as through port-isolation/microsegmentation. They need to control the spread of administrative credentials within the organization. A lot of organizations put the same local admin account on every workstation which makes the spread of NotPetya style worms trivial. They need to reevaluate trust relationships between domains, so that the admin of one can't infect the others.These solutions are difficult, which is why news articles don't mention them. You don't have to know anything about security to proclaim "the problem is lack of patches". It's moral authority, chastising the weak, rather than a proscription of what to do. Solving supply chain hacks and Windows credential sharing, though, is hard. I don't know any universal solution to this -- I'd have to thoroughly analyze your network and business in order to Ransomware Malware Patching FedEx NotPetya Wannacry
Last update at: 2024-06-01 11:09:09
See our sources.
My email:

To see everything: Our RSS (filtrered) Twitter