What's new arround internet

Last one

Src Date (GMT) Titre Description Tags Stories Notes
ErrataRob.webp 2018-09-10 17:33:17 California\'s bad IoT law (lien direct) California has passed an IoT security bill, awaiting the government's signature/veto. It's a typically bad bill based on a superficial understanding of cybersecurity/hacking that will do little improve security, while doing a lot to impose costs and harm innovation.It's based on the misconception of adding security features. It's like dieting, where people insist you should eat more kale, which does little to address the problem you are pigging out on potato chips. The key to dieting is not eating more but eating less. The same is true of cybersecurity, where the point is not to add “security features” but to remove “insecure features”. For IoT devices, that means removing listening ports and cross-site/injection issues in web management. Adding features is typical “magic pill” or “silver bullet” thinking that we spend much of our time in infosec fighting against.We don't want arbitrary features like firewall and anti-virus added to these products. It'll just increase the attack surface making things worse. The one possible exception to this is “patchability”: some IoT devices can't be patched, and that is a problem. But even here, it's complicated. Even if IoT devices are patchable in theory there is no guarantee vendors will supply such patches, or worse, that users will apply them. Users overwhelmingly forget about devices once they are installed. These devices aren't like phones/laptops which notify users about patching.You might think a good solution to this is automated patching, but only if you ignore history. Many rate “NotPetya” as the worst, most costly, cyberattack ever. That was launched by subverting an automated patch. Most IoT devices exist behind firewalls, and are thus very difficult to hack. Automated patching gets beyond firewalls; it makes it much more likely mass infections will result from hackers targeting the vendor. The Mirai worm infected fewer than 200,000 devices. A hack of a tiny IoT vendor can gain control of more devices than that in one fell swoop.The bill does target one insecure feature that should be removed: hardcoded passwords. But they get the language wrong. A device doesn't have a single password, but many things that may or may not be called passwords. A typical IoT device has one system for creating accounts on the web management interface, a wholly separate authentication system for services like Telnet (based on /etc/passwd), and yet a wholly separate system for things like debugging interfaces. Just because a device does the proscribed thing of using a unique or user generated password in the user interface doesn't mean it doesn't also have a bug in Telnet.That was the problem with devices infected by Mirai. The description that these were hardcoded passwords is only a superficial understanding of the problem. The real problem was that there were different authentication systems in the web interface and in other services like Telnet. Most of the devices vulnerable to Mirai did the right thing on the web interfaces (meeting the language of this law) requiring the user to create new passwords before operating. They just did the wrong thing elsewhere.People aren't really paying attention to what happened with Mirai. They look at the 20 billion new IoT devices that are going to be connected to the Internet by 2020 and believe Mirai is just the tip of the iceberg. But it isn't. The IPv4 Internet has only 4 billion addresses, which are pretty much already used up. This means those 20 billion won't be exposed to the public Internet like Mirai devices, but hidden behind firewalls that translate addresses. Thus, rather than Mirai presaging the future, it represents the last gasp of the past that is unlikely to come again.This law is backwards looking rather than forward looking. Forward looking, by far the most important t Hack Threat Patching Guideline NotPetya Tesla
ErrataRob.webp 2018-05-23 18:45:27 The devil wears Pravda (lien direct) Classic Bond villain, Elon Musk, has a new plan to create a website dedicated to measuring the credibility and adherence to "core truth" of journalists. He is, without any sense of irony, going to call this "Pravda". This is not simply wrong but evil.Musk has a point. Journalists do suck, and many suck consistently. I see this in my own industry, cybersecurity, and I frequently criticize them for their suckage.But what he's doing here is not correcting them when they make mistakes (or what Musk sees as mistakes), but questioning their legitimacy. This legitimacy isn't measured by whether they follow established journalism ethics, but whether their "core truths" agree with Musk's "core truths".An example of the problem is how the press fixates on Tesla car crashes due to its "autopilot" feature. Pretty much every autopilot crash makes national headlines, while the press ignores the other 40,000 car crashes that happen in the United States each year. Musk spies on Tesla drivers (hello, classic Bond villain everyone) so he can see the dip in autopilot usage every time such a news story breaks. He's got good reason to be concerned about this.He argues that autopilot is safer than humans driving, and he's got the statistics and government studies to back this up. Therefore, the press's fixation on Tesla crashes is illegitimate "fake news", titillating the audience with distorted truth.But here's the thing: that's still only Musk's version of the truth. Yes, on a mile-per-mile basis, autopilot is safer, but there's nuance here. Autopilot is used primarily on freeways, which already have a low mile-per-mile accident rate. People choose autopilot only when conditions are incredibly safe and drivers are unlikely to have an accident anyway. Musk is therefore being intentionally deceptive comparing apples to oranges. Autopilot may still be safer, it's just that the numbers Musk uses don't demonstrate this.And then there is the truth calling it "autopilot" to begin with, because it isn't. The public is overrating the capabilities of the feature. It's little different than "lane keeping" and "adaptive cruise control" you can now find in other cars. In many ways, the technology is behind -- my Tesla doesn't beep at me when a pedestrian walks behind my car while backing up, but virtually every new car on the market does.Yes, the press unduly covers Tesla autopilot crashes, but Musk has only himself to blame by unduly exaggerating his car's capabilities by calling it "autopilot".What's "core truth" is thus rather difficult to obtain. What the press satisfies itself with instead is smaller truths, what they can document. The facts are in such cases that the accident happened, and they try to get Tesla or Musk to comment on it.What you can criticize a journalist for is therefore not "core truth" but whether they did journalism correctly. When such stories criticize "autopilot", but don't do their diligence in getting Tesla's side of the story, then that's a violation of journalistic practice. When I criticize journalists for their poor handling of stories in my industry, I try to focus on which journalistic principles they get wrong. For example, the NYTimes reporters do a lot of stories quoting anonymous government sources in clear violation of journalistic principles.If "credibility" is the concern, then it's the classic Bond villain h Tesla
ErrataRob.webp 2017-05-12 02:51:43 Some notes on Trump\'s cybersecurity Executive Order (lien direct) President Trump has finally signed an executive order on "cybersecurity". The first draft during his first weeks in power were hilariously ignorant. The current draft, though, is pretty reasonable as such things go. I'm just reading the plain language of the draft as a cybersecurity expert, picking out the bits that interest me. In reality, there's probably all sorts of politics in the background that I'm missing, so I may be wildly off-base.Holding managers accountableThis is a great idea in theory. But government heads are rarely accountable for anything, so it's hard to see if they'll have the nerve to implement this in practice. When the next breech happens, we'll see if anybody gets fired."antiquated and difficult to defend Information Technology"The government uses laughably old computers sometimes. Forces in government wants to upgrade them. This won't work. Instead of replacing old computers, the budget will simply be used to add new computers. The old computers will still stick around."Legacy" is a problem that money can't solve. Programmers know how to build small things, but not big things. Everything starts out small, then becomes big gradually over time through constant small additions. What you have now is big legacy systems. Attempts to replace a big system with a built-from-scratch big system will fail, because engineers don't know how to build big systems. This will suck down any amount of budget you have with failed multi-million dollar projects.It's not the antiquated systems that are usually the problem, but more modern systems. Antiquated systems can usually be protected by simply sticking a firewall or proxy in front of them."address immediate unmet budgetary needs necessary to manage risk"Nobody cares about cybersecurity. Instead, it's a thing people exploit in order to increase their budget. Instead of doing the best security with the budget they have, they insist they can't secure the network without more money.An alternate way to address gaps in cybersecurity is instead to do less. Reduce exposure to the web, provide fewer services, reduce functionality of desktop computers, and so on. Insisting that more money is the only way to address unmet needs is the strategy of the incompetent.Use the NIST frameworkProbably the biggest thing in the EO is that it forces everyone to use the NIST cybersecurity framework.The NIST Framework simply documents all the things that organizations commonly do to secure themselves, such run intrusion-detection systems or impose rules for good passwords.There are two problems with the NIST Framework. The first is that no organization does all the things listed. The second is that many organizations don't do the things well.Password rules are a good example. Organizations typically had bad rules, such as frequent changes and complexity standards. So the NIST Framework documented them. But cybersecurity experts have long opposed those complex rules, so have been fighting NIST on them.Another good example is intrusion-detection. These days, I scan the entire Internet, setting off everyone's intrusion-detection systems. I can see first hand that they are doing intrusion-detection wrong. But the NIST Framework recommends they do it, because many organizations do it, but the NIST Framework doesn't demand they do it well.When this EO forces everyone to follow the NIST Framework, then, it's likely just going to i Guideline Yahoo Tesla
ErrataRob.webp 2017-04-26 00:40:17 "Fast and Furious 8: Fate of the Furious" (lien direct) So "Fast and Furious 8" opened this weekend to world-wide box office totals of $500,000,000. I thought I'd write up some notes on the "hacking" in it. The tl;dr version is this: yes, while the hacking is a bit far fetched, it's actually more realistic than the car chase scenes, such as winning a race with the engine on fire while in reverse.[SPOILERS]Car hackingThe most innovative cyber-thing in the movie is the car hacking. In one scene, the hacker takes control of the cars in a parking structure, and makes them rain on to the street. In another scene, the hacker takes control away from drivers, with some jumping out of their moving cars in fear.How real is this?Well, today, few cars have a mechanical link between the computer and the steering wheel. No amount of hacking will fix the fact that this component is missing.With that said, most new cars have features that make hacking possible. I'm not sure, but I'd guess more than half of new cars have internet connections (via the mobile phone network), cameras (for backing up, but also looking forward for lane departure warnings), braking (for emergencies), and acceleration.In other words, we are getting really close.As this Wikipedia article describes, there are levels for autonomous cars. At level 2 or 3, cars get automated steering, either for parking or for staying in the lane. Level 3 autonomy is especially useful, as it means you can sit back and relax while your car is sitting in a traffic jam. Higher levels of autonomy are still decades away, but most new cars, even the cheapest low end cars, will be level 3 within 5 years. That they make traffic jams bearable makes this an incredibly attractive feature.Thus, while this scene is laughable today, it'll be taken seriously in 10 years. People will look back on how smart this movie was at predicting the future.Car hacking, part 2Quite apart from the abilities of cars, let's talk about the abilities of hackers.The recent ShadowBrokers dump of NSA hacking tools show that hackers simply don't have a lot of range. Hacking one car is easy -- hacking all different models, makes, and years of cars is far beyond the ability of any hacking group, even the NSA.I mean, a single hack may span more than one car model, and even across more than one manufacturer, because they buy such components from third-party manufacturers. Most cars that have cameras buy them from MobileEye, which was recently acquired by Intel.  As I blogged before, both my Parrot drone and Tesla car have the same WiFi stack, and both could be potential hacked with the same vulnerability. So hacking many cars at once isn't totally out of the question.It's just that hacking all the different cars in a garage is completely implausible.God's EyeThe plot of the last two movies as been about the "God's Eye", a device that hacks into every camera and satellite to view everything going on in the world.First of all, all hacking is software. The idea of stealing a hardware device in order enable hacking is therefore (almost) always fiction. There's one corner case where a quantum chip fact Tesla
ErrataRob.webp 2016-06-18 23:17:27 Tesla review: What you need to know about charging (lien direct) Before you buy an electric car, you need to understand charging. It's a huge deal. You think it works almost like filling the gas tank. It doesn't. Before going on long trips, you first need to do math and a bit of planning.The MathLike BMW model numbers indicate engine size, Tesla model numbers indicate the size of the battery, so my "Tesla S P90D" has a 90kwh (killowatt-hour) battery, with a 286mile range. Their lowest end model is the “Tesla S 60”, which has a 60kwh hour battery, or a 208mile advertised range.In the United States, a typical plug is a 120volt circuit with a maximum of 15amps. Doing the math, this is how long it'll take for me to recharge the battery:That's right, 1.4 days (or 2.1 days for a 90kwh car). This is the absolute worse case scenario, mind you, but it demonstrates that you have to pay attention to charging. You can't simply drive up to a station, fill up the tank in a couple minutes, and drive away.Let's say you live in Austin, Texas, and you have a meeting in Dallas. You think that you can drive up to Dallas in your new Tesla S 60, let the car charge while you are in the meeting, and then drive home. Or, maybe you have dinner there, letting the car charge longer. Or maybe you even stay overnight.Nope, even 24 hours later, you still might not have enough charge left to get home. At 195 miles, it's at the range of the 60kwh battery, which would take more than a day to recharge using a normal electric circuit.Faster ChargingThat was a worst case scenario. Luckily, you probably won't be charging using a normal 120volt/15amp circuit. That's just the emergency backup if all else fails.In your home, for high-watt devices like ovens, air conditioners, and clothes dryers, you have higher wattage circuits. The typical max in your home will be a 240volt/50amp circuit. It has a different power connector than a normal circuit, thicker wires, and so forth. Doing the math on this sucker, you get:For our 190 mile drive, then, you can except to drive to Dallas, charge during the meeting and dinner for 5 hours, then you'll have enough juice to get back home.When you buy a Tesla, the first thing you'll do is hire and electrician, and for $1000 to $5000, pay them to install this high-end circuit in your garage or car port. Since you garage is usually where the circuit breaker is located anyway, it's usually the low-end of this range. You have to choose either the NEMA 14-50 plug, which can be used to power any electric car, or the Tesla HPWC (“High Power Wall Charger”) that just bundles the cord and everything together, making it easier t Tesla ★★★★★
Last update at: 2024-05-17 07:07:58
See our sources.
My email:

To see everything: Our RSS (filtrered) Twitter