What's new arround internet

Last one

Src Date (GMT) Titre Description Tags Stories Notes
GoogleSec.webp 2024-03-28 18:16:18 Adressez désinfectant pour le firmware à métal nu
Address Sanitizer for Bare-metal Firmware
(lien direct)
Posted by Eugene Rodionov and Ivan Lozano, Android Team With steady improvements to Android userspace and kernel security, we have noticed an increasing interest from security researchers directed towards lower level firmware. This area has traditionally received less scrutiny, but is critical to device security. We have previously discussed how we have been prioritizing firmware security, and how to apply mitigations in a firmware environment to mitigate unknown vulnerabilities. In this post we will show how the Kernel Address Sanitizer (KASan) can be used to proactively discover vulnerabilities earlier in the development lifecycle. Despite the narrow application implied by its name, KASan is applicable to a wide-range of firmware targets. Using KASan enabled builds during testing and/or fuzzing can help catch memory corruption vulnerabilities and stability issues before they land on user devices. We\'ve already used KASan in some firmware targets to proactively find and fix 40+ memory safety bugs and vulnerabilities, including some of critical severity. Along with this blog post we are releasing a small project which demonstrates an implementation of KASan for bare-metal targets leveraging the QEMU system emulator. Readers can refer to this implementation for technical details while following the blog post. Address Sanitizer (ASan) overview Address sanitizer is a compiler-based instrumentation tool used to identify invalid memory access operations during runtime. It is capable of detecting the following classes of temporal and spatial memory safety bugs: out-of-bounds memory access use-after-free double/invalid free use-after-return ASan relies on the compiler to instrument code with dynamic checks for virtual addresses used in load/store operations. A separate runtime library defines the instrumentation hooks for the heap memory and error reporting. For most user-space targets (such as aarch64-linux-android) ASan can be enabled as simply as using the -fsanitize=address compiler option for Clang due to existing support of this target both in the toolchain and in the libclang_rt runtime. However, the situation is rather different for bare-metal code which is frequently built with the none system targets, such as arm-none-eabi. Unlike traditional user-space programs, bare-metal code running inside an embedded system often doesn\'t have a common runtime implementation. As such, LLVM can\'t provide a default runtime for these environments. To provide custom implementations for the necessary runtime routines, the Clang toolchain exposes an interface for address sanitization through the -fsanitize=kernel-address compiler option. The KASan runtime routines implemented in the Linux kernel serve as a great example of how to define a KASan runtime for targets which aren\'t supported by default with -fsanitize=address. We\'ll demonstrate how to use the version of address sanitizer originally built for the kernel on other bare-metal targets. KASan 101 Let\'s take a look at the KASan major building blocks from a high-level perspective (a thorough explanation of how ASan works under-the-hood is provided in this whitepaper). The main idea behind KASan is that every memory access operation, such as load/store instructions and memory copy functions (for example, memm Tool Vulnerability Mobile Technical ★★
GoogleSec.webp 2024-03-28 14:29:57 Approche de Google Public DNS \\ pour lutter contre les attaques d'empoisonnement au cache
Google Public DNS\\'s approach to fight against cache poisoning attacks
(lien direct)
Tianhao Chi and Puneet Sood, Google Public DNSThe Domain Name System (DNS) is a fundamental protocol used on the Internet to translate human-readable domain names (e.g., www.example.com) into numeric IP addresses (e.g., 192.0.2.1) so that devices and servers can find and communicate with each other. When a user enters a domain name in their browser, the DNS resolver (e.g. Google Public DNS) locates the authoritative DNS nameservers for the requested name, and queries one or more of them to obtain the IP address(es) to return to the browser.When DNS was launched in the early 1980s as a trusted, content-neutral infrastructure, security was not yet a pressing concern, however, as the Internet grew DNS became vulnerable to various attacks. In this post, we will look at DNS cache poisoning attacks and how Google Public DNS addresses the risks associated with them.DNS Cache Poisoning AttacksDNS lookups in most applications are forwarded to a caching resolver (which could be local or an open resolver like. Google Public DNS). The path from a client to the resolver is usually on a local network or can be protected using encrypted transports like DoH, DoT. The resolver queries authoritative DNS servers to obtain answers for user queries. This communication primarily occurs over UDP, an insecure connectionless protocol, in which messages can be easily spoofed including the source IP address. The content of DNS queries may be sufficiently predictable that even an off-path attacker can, with enough effort, forge responses that appear to be from the queried authoritative server. This response will be cached if it matches the necessary fields and arrives before the authentic response. This type of attack is called a cache poisoning attack, which can cause great harm once successful. According to RFC 5452, the probability of success is very high without protection. Forged DNS responses can lead to denial of service, or may even compromise application security. For an excellent introduction to cache poisoning attacks, please see “ Technical ★★
GoogleSec.webp 2023-11-02 12:00:24 Plus de moyens pour les utilisateurs d'identifier les applications testées sur la sécurité indépendante sur Google Play
More ways for users to identify independently security tested apps on Google Play
(lien direct)
Posted by Nataliya Stanetsky, Android Security and Privacy Team Keeping Google Play safe for users and developers remains a top priority for Google. As users increasingly prioritize their digital privacy and security, we continue to invest in our Data Safety section and transparency labeling efforts to help users make more informed choices about the apps they use. Research shows that transparent security labeling plays a crucial role in consumer risk perception, building trust, and influencing product purchasing decisions. We believe the same principles apply for labeling and badging in the Google Play store. The transparency of an app\'s data security and privacy play a key role in a user\'s decision to download, trust, and use an app. Highlighting Independently Security Tested VPN Apps Last year, App Defense Alliance (ADA) introduced MASA (Mobile App Security Assessment), which allows developers to have their apps independently validated against a global security standard. This signals to users that an independent third-party has validated that the developers designed their apps to meet these industry mobile security and privacy minimum best practices and the developers are going the extra mile to identify and mitigate vulnerabilities. This, in turn, makes it harder for attackers to reach users\' devices and improves app quality across the ecosystem. Upon completion of the successful validation, Google Play gives developers the option to declare an “Independent security review” badge in its Data Safety section, as shown in the image below. While certification to baseline security standards does not imply that a product is free of vulnerabilities, the badge associated with these validated apps helps users see at-a-glance that a developer has prioritized security and privacy practices and committed to user safety. To help give users a simplified view of which apps have undergone an independent security validation, we\'re introducing a new Google Play store banner for specific app types, starting with VPN apps. We\'ve launched this banner beginning with VPN apps due to the sensitive and significant amount of user data these apps handle. When a user searches for VPN apps, they will now see a banner at the top of Google Play that educates them about the “Independent security review” badge in the Data Safety Section. Users also have the ability to “Learn More”, which redirects them to the App Validation Directory, a centralized place to view all VPN apps that have been independently security reviewed. Users can also discover additional technical assessment details in the App Validation Directory, helping them to make more informed decisions about what VPN apps to download, use, and trust with their data. Tool Vulnerability Mobile Technical ★★
Last update at: 2024-05-16 22:08:18
See our sources.
My email:

To see everything: Our RSS (filtrered) Twitter